Copyright | (C) 2015 Christopher Chalmers |
---|---|
License | BSD-style (see the file LICENSE) |
Maintainer | Christopher Chalmers |
Stability | experimental |
Portability | non-portable |
Safe Haskell | None |
Language | Haskell2010 |
This module defines a polar coordinate data type. This type can be used as an axis space for polar plots.
- newtype Polar a = Polar (V2 a)
- mkPolar :: n -> Angle n -> Polar n
- polar :: (n, Angle n) -> Polar n
- unpolar :: Polar n -> (n, Angle n)
- polarIso :: Iso' (Polar n) (n, Angle n)
- polarV2 :: RealFloat n => Iso' (Polar n) (V2 n)
- interpPolar :: Num n => n -> Polar n -> Polar n -> Polar n
- class Radial t where
- class Radial t => Circle t where
- class HasX t where
- class HasX t => HasY t where
- class HasR t where
- er :: Radial v => E v
- eθ :: Circle v => E v
- etheta :: Circle v => E v
Polar type
Monad Polar Source # | |
Functor Polar Source # | |
MonadFix Polar Source # | |
Applicative Polar Source # | |
Foldable Polar Source # | |
Traversable Polar Source # | |
Generic1 Polar Source # | |
Distributive Polar Source # | |
Representable Polar Source # | |
MonadZip Polar Source # | |
HasR Polar Source # | |
HasY Polar Source # | |
HasX Polar Source # | |
Circle Polar Source # | |
Radial Polar Source # | |
(TypeableFloat n, Renderable (Path V2 n) b) => RenderAxis b Polar n Source # | |
RealFloat n => PointLike V2 n (Polar n) Source # | Does not satify lens laws. |
Wrapped (Polar a0) Source # | |
(~) * (Polar a0) t0 => Rewrapped (Polar a1) t0 Source # | |
type Rep1 Polar Source # | |
type Rep Polar Source # | |
type BaseSpace Polar Source # | |
type Unwrapped (Polar a0) Source # | |
type MainOpts (Axis b Polar n) # | |
Polar functions
interpPolar :: Num n => n -> Polar n -> Polar n -> Polar n Source #
Polar interpolation between two polar coordinates.
Classes
Space which has a radial length basis. For Polar and Cylindrical this is the radius of the circle in the xy-plane. For Spherical this is the distance from the origin.
class HasX t => HasY t where Source #
Coordinate with at least two dimensions where the x and y coordinates can be retreived numerically.
A space which has magnitude _r
that can be calculated numerically.
Nothing